Software Design
&
Architecture

Dr. Cahit Karakus

First degree in university

» A first-place degree in university represents the pinnacle of intellectual qualifications.

. Someo?le which has intellectual knowledge is a person who thinks mentally and
rationally.

* Someone which has intellectual knowledge describes things based on reason,
knowledge, and thought rather than emotion.

 Someone which has intellectual knowledge discusses based on knowledge and logic.
 Someone which has intellectual knowledge is a cultured, educated, and thinking person.

* Someone which has intellectual knowledge is a person who interested in fields such as
art, literature, science, and philosophy; a conscious and questioning on social issues.

* A first-place degree in university represents the pinnacle of intellectual qualifications.
Students earning a first-place degree must be able to see beyond the accepted concepts
of the day. They must be able to discuss topics with highly intelligent and knowledgeable
individuals without hesitation.

How important talent is!

* A talent is a skill, either innate or developed later in life, that allows a
person to perform a specific task more easily, quickly, and
successfully.

* You may not be particularly talented; the important thing is to focus
on your work and act with discipline.

Course Introduction

* This course provides students with a solid foundation in software desi%n and
architecture. It covers fundamental design principles, architectural styles, design
patterns, quality attributes, and modern practices in software engineering.

Students will learn how to design, document, and evaluate software architectures

through theory, case studies, and hands-on exercises.

Learning Outcomes

e - Understand the difference between software design and software architecture
- Apply design principles such as modularity, abstraction, and SOLID
- Model systems using UML diagrams
- Recognize and apply common architectural styles and design patterns
- Evaluate architectures with respect to quality attributes
- Document and communicate architectural decisions
- Apply modern architectural practices (Agile, DevOps, Cloud-Native)
- Work on a project to design and present a complete software architecture

Software Architecture -1 [E2

» Software architecture refers to the high level structures of a software Zi]

system, the discipline of creating such structures, and the documentation
of these structures. These structures are needed to reason about the
software system.

* An architectural pattern is a general, reusable solution to a commonly
occurring problem in software architecture within a given context.
Architectural patterns are similar to software design pattern but have a
broader scope.

Wikipedia

https://en.wikipedia.org/wiki/Software_architecture

Architecture - Design

“Architecture is concerned with the selection of architectural elements,
their interactions, and the constraints on those elements and their
interactions necessary to provide a framework in which to satisfy the
requirements and serve as a basis for the design.”

(vs. design...)

“Design is concerned with the modularization and detailed interfaces of
the design elements, their algorithms and procedures, and the data
types needed to support the architecture and to satisfy the
requirements.”

Architecture Structures

* Architecture Structures (For Physical Structures):The art of designing and constructing buildings
and other structures for people to live in, work in, or use for various purposes. Example: The
architecture of Istanbul combines Byzantine and Ottoman styles.

* In Computer Science and Software: Architecture refers to the overall design of a system,
so{,tware, or hardware, how its components are organized, and how they interact with each
other.

 Computer Science (Bilgisayar Bilimi), bilgisayarlarin nasil calistigini, bilgiyi nasil i?Iediéini ve
Erob emleri cdzmek icin neleri kuIIamIabiIece%ini inceleyen bilim dahdir. Yani yalnizca bilgisayar
ullanmakla degil, bilgisayarlarin mantigini, dilini ve sinirlarini anlamakla ilgilenir.

 Example:
* Computer architecture is the hardware structure (Physcial elements) of a computer.
» Software architecture (the modular structure of software).

* Generally speaking: The order, structure, and design of something. Example: The architecture of
the organization ensures efficiency. So, "architecture" essentially means "structure, design,
order,” but depending on the context, it takes on specific meanings in different fields, such as
architecture, computer architecture, and software architecture.

Analogies with
Civil Architecture

Civil Engineering and Civil Architecture

are concerned with the engineering and design of
civic structures (roads, buildings, bridges, etc.)

e Architecture vs. Construction

* Multiple views
* Civil: Artist renderings, elevations, floor plans, blueprints
* Software: Code, object design, boxes-and-arrows, GUI

* Architectural styles

 Civil: Classical, Romanesque, Gothic, Renaissance, Baroque, Art
Deco

» Software: Pipe-and-filter, client/server, layered system
* Influence of style on engineering principle
* Influence of style on choice of materials

Code and Object Design

* |In software engineering, code (often called source code) refers to the set of
written instructions that tell a computer what to do. It is the human-readable text
created using a programming language such as Python, Java, C++, or JavaScript.

* Object Design: In software engineering, object design is the process of
transforming analysis models (like class diagrams or use cases) into a detailed
design that describes how the system will actually be implemented using objects.
It’s part of the object-oriented design (OOD) phase, which bridges what the
system should do (analysis) and how it will do it (implementation).@ In Simple
TermsObject design determines how objects (classes, attributes, methods, and
relationships) will be defined, interact, and collaborate to make the system
work.So:In analysis, we identify what the system needs (e.g., “We have
Customers and Orders”).In object design, we decide how to represent those
objects in code (e.g., what data and methods they have, how they communicate,
what classes they belong to).

Boxes and Arrows”

* “Boxes and Arrows”In software engineering, the term “boxes-and-arrows”
informally refers to diagrammatic representations of systems where:Boxes
represent components or entities (e.g., modules, objects, classes,
processes), andArrows represent relationships or interactions (e.g., data
flow, control flow, communication, dependency).So, “boxes-and-arrows” is
a generic visual modeling style — not a specific formal method, but a way
to illustrate structure or behavior in a simple, intuitive way. PurposeThe
goal of boxes-and-arrows diagrams is to help people see the system, not
just read about it.They make abstract ideas concrete by showing:What
parts exist (boxes)How they connect (arrows)What flows or dependencies
exist between themln short:Boxes-and-arrows = a visual shorthand for
system architecture and logic.

GUI stands for Graphical User Interface.

e GUI is the visual part of a computer program that allows users to
interact with the software using graphics, such as:
* Windowslcons
* Buttons
* MenusText boxes

* Instead of typing complex commands (like in a command-line
interface), users can click, drag, or tap to perform actions.

* In Simple Terms A GUI is how the user sees and controls the software.

* So, while programmers deal with code and logic, users deal with the
GUI — the “face” of the software.

Software Architecture

“The architecture of a software system defines that system in terms of
computational components and interactions among those
components. ... In addition to specifying the structure and topology
of the system, the architecture shows the correspondence between
the requirements and elements of the constructed system, thereby
providing some rationale for the design decisions.”

Software Architecture

“Software architecture is a level of design that goes beyond the algorithms
and data structures of the computation; designing and specifying the
overall system structure emerges as a new kind of problem.

Structural issues include,
* gross organization and global control structure;
* protocols for communication, synchronization, and data access;
* assignment of functionality to design elements;
* physical distribution;
e composition of design elements;
* scaling and performance;
e and selection among design alternatives.”

Differences Between Civil and
Software Architecture

* Physical vs. conceptual

e Static vs. dynamic

* Little evolution vs. frequent evolution

* Different mathematical and scientific bases

e Different notions of “reuse”

Software Designing

* In the software development process, it determines not how a program will
function, but how it will be organized.

» Software design is the planning of a software's components, modules,
interfaces, and interactions. In other words, the software's "architecture" is
created to solve a problem.

* Key Features:

* Abstraction: Making the system more understandable by hiding unnecessary
details.

Modularity: Dividing the system into small, independent, and reusable
components.

Low Coupling: Reducing inter-module dependencies.
High Cohesion: Each module focuses on a single purpose.
Reusability: The ability to reuse previously developed components.

What is the software system

* A software system represents an integrated structure of programs,
modules, services, and their relationships that work together to
achieve a specific goal or solve a specific problem. In other words, it's
not a single application, but an ecosystem of applications, databases,
services, libraries, and user interfaces.

Features of the Software System

* |t consists of components:
» Application (e.g., mobile app, web app)
e Database
» Services (APls, microservices)
e User interface
* Infrastructure (server, cloud, network)

* Works for a common purpose. For example, a banking software system

maintains customer accounts, processes money transfers, and ensures
security.

* It has an organized structure (architecture(j. Software systems are often
designed with layered, microservice-based, or monolithic architectures.

* |t has a lifecycle:
* Design - Development - Testing - Deployment - Maintenance - Update.

Architecture of a software system

» Software architecture defines how a software system is organized at a
high level, what its components are, how these components
communicate with each other, and the principles by which it is
designed.

Basic Features of Software Architecture

 Components: The fundamental building blocks of software (modules,
services, classes).

* Connectors: The mechanisms that determine how these components
communicate (API, messaging, data flow).

* Patterns: Design principles that determine the organization of
software (e.g., layered architecture, MVC, microservices).

* Architectural Decisions: Sets of decisions that specify why a particular
technology, method, or structure was chosen.

* Constraints: Limitations affecting the architecture, such as
performance, security, and scalability.

Goals of Software Architecture

* Making the system understandable and manageable.
e Simplifying maintenance and development.

* Meeting quality requirements such as performance, security, and
scalability.

* Ensuring that different teams (analysts, developers, testers, DevOps)
work within a common framework.

Computing Components in the Software System

Processor Logic: Some of the actual programming that meets user needs has been
created. For example: A banking system runs an "interest scheduling” function. It is the
most basic of calculation components.

Algorithms: Step-by-step processes defined to solve a problem. For example: Sorting
applications, machine learning models, search applications.

Data Processing Components: Receive data, process it, and produce results. For
example: Storing incoming data files, generating reports.

Mathematical / Numerical Computing Modules: These are specialized programming
libraries used in scientific software or engineering applications. For example:
Programming engines such as MATLAB, NumPy, TensorFlow.

Services: In large systems, each service performs specific programming. For example:

"payment service,"” "inventory control service."

Runtime (Runtime Environment): Runs the infrastructure of subroutines. For example:
JVM (Java Virtual Machine), .NET CLR, Python interpreter.

ComButationaI Resources (Hardware Supported): Computational power provided by
capabilities.

* CPU: Central Proccessing Unit or General-purpose programming.

* GPU: Parallel programming, artificial intelligence/image processing.

* FPGA/ASIC: Scheduling circuits.

Elements of Software
Architecture

* Perry & Wolf

e Structural Elements

* Processing * kx K& This Class * * %

* Data

* Connecting (“glue”)
* Form: Weighted Properties and Relationships * COIT)pOI‘IentS
* Rationale * (Connectors

« Shaw & Garlan: * Interfaces

« Components * Configurations

Interconnections - (implies) Links

Rules of Composition

Rules of Behavior

Components

A component is a building block that is ...

* A unit of computation or a data store, with an interface specifying the
services it provides

* A unit of deployment
* A unit of reuse

The Difference Between
Components and Objects

Lifecycle
* Objects are created and destroyed constantly
 Components are created and destroyed infrequently

Purpose of use
* Graphics toolkit (component) vs. graphics widget (object)
» Data store (component) vs. data structure (object)

Type system
* Objects are instances of a class, with classes arranged in hierarchies according to inheritance relationships
* Components may have their own type system (may be trivial), often very few components of the same type

Size
* Objects tend to be small
 Components can be small (one object) or large (a library of objects or a complete application)

Connectors

* A connector is a building block that enables interaction among
components

* Shared variables
* Procedure calls (local or remote)
* Messages and message buses
* Events
* Pipes
* Client/server middleware
* Connectors may be implicit or explicit

* Implicit: procedure calls
* Explicit: First-class message buses

The Difference Between
Components and Connectors

e Task Performed

 Components focus on computational tasks
e Connectors focus on communication tasks

* Application Semantics

 Components generally implement most of the application
semantics

e Connectors do not (they may change the form of the message, but
do not generally change its meaning)
e “Awareness”

 Components (should be) unaware of who is using them and for
what purpose

e Connectors are more aware of components connected to them so
they can better facilitate communication

Not everybody agrees on this!

Interfaces

* An interface is the external “connection point” on a component or
connector that describes how other components/connectors interact
with it

* Provided and required interfaces are important

e Spectrum of interface specification

» Loosely specified (events go in, events go out)

* API style (list of functions)
 Very highly specified (event protocols across the interface in CSP)

* Interfaces are the key to component interoperability (or lack thereof)

Configurations

* A configuration is ...
 The overall structure of a software architecture

* The topological arrangement of components and connectors
* Implies the existence of links among components/connectors

* A framework for checking for compatibility between interfaces,
communication protocols, semantics, ...

* “If links had semantics, they’d be connectors.”
e Usually constructed according to an architectural style

Graphically...

Interfaces

Component

Connector

[—
Busl
j

Interfaces

Graphically (cont).

Example:

Architectures for a Compiler

Parser

File

File

Scanner

Legend:

Semantic
Analyzer

Parser

Parse Tree

File

Semantic
Analyzer

Connector

enerator

What does architecture buy
you?

* On its face, nothing!

* A bad architecture can imply a spaghetti code system

* See “Big Ball of Mud,”
http://www.devcentre.org/mud/mudmain.htm

 How can we use architecture to improve the qualities (-ilities) of our
software systems?

* Answer: Architectural Styles

Architectural Styles

* An architectural style is ...

* A set of constraints you put on your development to elicit desirable
properties from your software architecture.

* These constraints may be:
* Topological
* Behavioral
« Communication-oriented
e etc. etc.

* Working within an architectural style makes development harder

e BUT architectural styles help you get beneficial system properties that would
be really hard to get otherwise

Common Software Architectural Styles

e Dataflow Systems
e Batch sequential
* Pipes and filters

* Virtual Machines
* Interpreters

e Call-and-Return Systems * Rule-based systems

 Main program and subroutines * Data-antgred Systems
* Object-oriented systems (Repositories)
* Hierarchical layers (onion layers) * Databases

* Hypertext systems
* Blackboards

* Independent Components

 Communicating processes (client/server
and peer-to-peer)

* Event systems

* Implicit invocation

The Vision: Architecture-Based Composition & Reuse

* A framework for design and implementation of large-scale software
systems

* A basis for early analysis of software system properties

* A framework for selection and composition of reusable off-the-shelf
components

e A basis for controlled evolution of software
e A basis for runtime evolution of software

The Reality: Architectural Mismatch

* Architectural mismatch refers to a mismatch between assumptions
made by different components about the structure of the system and
the nature of the environment in which they operate

* Assumptions about the nature of the components
* substrate on which a component is built
e control model
* data model

* Assumptions about the nature of the connectors

e protocols
e data model

Architectural Mismatch
(Cont.)

* Assumptions about the global configuration
* topology
e presence of certain components or connectors
* absence of certain components or connectors

e Assumptions about the system construction process

* order in which elements are instantiated
* order in which elements are combined

* Assumptions about the operating environment
* Threading concerns
 Availability or characteristics of lower-level functionality (OS-level, network)

Standards: The Solution?

 Standards define a set of “assumptions” that all components must
adhere to

« Component interface standards (e.g., JavaBeans, ActiveX, Netscape Plug-in
API)

 Component interoperability standards (e.g., CORBA, DCOM, Java RMI)
e Standard component frameworks (e.g., Microsoft Foundation Classes)

* But standards also reduce design flexibility

More Reality:
“Architectural Drift”

* How are architectures implemented now?

Elevator Elevator_Controller Door

—control —— — —contral—

1

communicate with

*

/%

Elevator_Button Floor_Button

Brilliant Software Semi-Cohesive

 ——

Architecture Object Design in UML

Python 1.5.2 (#1, Apr 18 999,
16:03:16) Copyright 1991-1995
Stichting Mathematisch Centrum,
Amsterdam >>> import asynchat #
create an instance >>> channel =

asynchat.async _chat () # access to
attributes from an instance >>>
channel.ac_in buffer '' >>>

channel.ac_in buffer size 4096 # now
let's look at the name spas >>>

channel. dict ['ac in buffer'] ''
>>>
channel. dict ['ac in buffer size'

] Traceback (innermost last): File
"<pyshell#11>", line 1, in ?
channel. dict ['ac in buffer size'
] KeyError: ac_in buffer size # not
found in the instance's namespace! #
check the class namespace >>>
asynchat.async chat.ac_in buffer siz
e 4096

Incomprehensible
Python Code

Why does drift happen?

e Eventually, software must become code
* Programming languages and operating systems provide poor support for
entities at the architecture level of abstraction
 Induces “architectural drift” (Garlan & Allen)

* As the system gets built and (especially) maintained, the system drifts further
away from its original intended design/architecture

* Increases software costs and failures dramatically

Solutions for Drift

* Maintain a persistent view of architecture at implementation time
e Co-evolve requirements and architecture
e Use architecture as the basis for:

* System Design

* Maintenance

e System evolution
* Deployment

* Much of this is still “research!”

The Vision

* Architecture-driven Software Development
* Architecture as the primary abstraction for design

e The architecture is defined very early in the development cycle (possibly in
parallel with the requirements)

* The architecture persists into the implementation and maintenance phases of
development

e Gap analysis: how do we get there from here?
* Ways to represent, manipulate, and visualize architectures
* Tool support for designing, implementing and evolving architectures

* Development of Architecture-centric Development Environments
* Think “Visual Studio” but for architectures, rather than code

Contrast: IDE vs. Architecture-based DE

Code-based IDE Tools:
eText editor

eGUI Builder
eCompiler

eDebugger

eStatic Analysis Tools
eProject Management

eSource file configuration
management

Architecture-based Tools:

eVisual Editor

eComposition assistants

eCode generator

eInstantiation & Evolution Management
eVarious analysis tools

oStyle-specific constraint management

eComponent-based configuration
management

* An extensible architecture-centric development environment
* Tools within the environment have special support for the C2 architectural style
* The environment itself is built in the C2 style

* Tools (integrated in various versions):
 Editors (visual, syntax-directed, and command-line)
* Analysis tools (static & dynamic analysis, design critics)

e Off-the-shelf integrations

* Code-based IDEs (Eclipse, Metamata, etc.)
* OOAD tools (Rational Rose)
* Hypermedia systems (Browsers, Chimera)

* And more...

Architecture Description Languages

* How do we “write down” a software architecture?

* An architecture description language (or architecture definition
language, or ADL) is a formal notation for describing the structure
and behavior of a software architecture

* ADLs provide
* a concrete syntax
* a formal semantics
* a conceptual framework
 for explicitly modeling the conceptual architecture of a system

* Contrast with programming languages, which define the
implementation of a system

What Goes in a Software Architecture Description?

* “An ADL must explicitly model components, connectors,
and their configurations; furthermore, to be truly usable and
useful, it must provide tool support for architecture-based
development and evolution. These four elements of an ADL
are further broken down into constituent parts.”

* “In order to infer any kind of information about an
architecture, at a minimum, interfaces of constituent
components must also be modeled. Without this information,
an architectural description becomes but a collection of
(interconnected) identifiers, similar to a “boxes and lines”
diagram with no explicit underlying semantics.”

What people have put in their
descriptions

Distributed
Systems

Product
Families

Behavioral
Properties

Implementatio

Configuration © O o n Mappings
Management o
e Oo
Dynamic o° °
y Q O o o

Systems Mobile,

Dynamic
Architecture

7
_ A\ A
TN

/ﬁ?&\

Architecture Patterns

Architectural Patterns

* The fundamental problem to be solved with a large system is how to
break it into chunks manageable for human programmers to
understand, implement, and maintain.

* Large-scale patterns for this purpose are called architectural patterns.

Architecture Patterns

Layered pattern

Client-server pattern
Master-slave pattern
Pipe-filter pattern

Broker pattern

Peer-to-peer pattern
Event-bus pattern
Model-view-controller pattern
Blackboard pattern

10. Interpreter pattern

WO NN REWNRE

1. Layered pattern

* This pattern is also known as n-tier architecture pattern.

* It can be used to structure programs that can be decomposed into
groups of subtasks, each of which is at a particular level of
abstraction.

e Each layer provides services to the next higher layer.

Layer 3

Component 3.1

Usage

Layer 2

* General desktop applications.

Component 2.1 Component 2.2

* E commerce web applications.

Layer |

Component 1.1 Component 1.2

Common layers of a general information system

* Presentation layer (also known as Ul layer) Layern
* Application layer (also known as service layer) l
* Business logic layer (also known as domain layer) Layer n-1
* Data access layer (also known as persistence layer)
Browser Layer 1
mlrr.: Webiurmﬁ Win Forms WPF Presentation Layer FTP p------- FTP
Service Layer Service Layer T ------- TCP
Business Layer Business Layer T I P
ADO.NET | | Ling2sql Entity Framework Pata AccessLayer Ethemet F------- Ethernet

/

physical connection

Database

Layered pattern

Presentation Layer [Component] [(omponent] [(omponent]

e Different levels of abstraction

e Requests go down, notifictions
g0 back up Business Layer [Component] [Component] [(omponent]

* Possible to define stable

interaces between layers
¢ May add or Change Iayers over Persistence Layer [Component} [(omponent] [(omponent]

time
Database Layer o O o o

Layered pattern

| A
L
]
. Customer
Presentation Layer Screen
Business Layer
Persistence Layer
L P
I P!
L L
Database Layer LT '_'_" _J

Solution

Client

2. Client-server pattern

TCP/IP

* This pattern consists of two parties; v
* aserver and Server
* multiple clients.

* The server component will provide services to multiple client
components.

* Clients request services from the server and the server provides
relevant services to those clients.

* The server continues to listen to client requests.
Usage
* Online applications such as email, document sharing and banking.

Client / Server Architecture

Client Server
Application N Server Net
Libraries
l T Open Data
API Source
: l - T Relational
Client Net Engine
Libraries PE— l T
Storage Engine

v t

0S H/W Memorv

3. Master-slave pattern) e ey L]

" Reads
| Client | | Slave :
* This pattern consists of two parties; ((ctem }—m - |

* master and
* slaves.

* The master component distributes the work among identical slave
components, and computes a final result from the results which the slaves

return.

Usage

* In database replication, the master database is regarded as the
authoritative source, and the slave databases are synchronized to it.

. Se_riph)erals connected to a bus in a computer system (master and slave
rives).

N

Master

Slave 1

Slave 2

Slave 3

4. Pipe-filter pattern

* This pattern can be used to structure systems which produce and process a
stream of data.

* Each processing step is enclosed within a filter component.
* Data to be processed is passed through pipes.
* These pipes can be used for buffering or for synchronization purposes.

Usage

* Compilers. The consecutive filters perform lexical analysis, parsing, semantic
analysis, and code generation.

 Workflows in bioinformatics.

* Pipes eliminate need for intermediate files
e Can replace filters easily
* Can achive different effects through recombination

* |f data stream format is standard, filters ay bbe developed
independently

* Parallelization possible Data from
Snurce 1
IR g — g3
Transformed
T15I<.~'-‘-. Task B Task C Task D data
f.-.--"'--- T --"'--._\
/ \\..
Components f \
reused in |
different
pipelines ~ Business |
%, loai i
Transformed
data
Data from

Source 2
—_— «r((—* *(I—r#*ll—r#—*ll-r#

Task A Task E

e Data Stream processing may be subdivided into stages

* May recombine stages

* Non adjacent stages do not share information

* May desire different stages to be on different processors

e Standardized data structure between stages

The "pump”is the initigting
event; it "pumps" a
me=s3age into the pipeline

The output of each filter
operation becomes the input of
the neat fiter operation .

Vad=d=0

Each filter compon ent
pernnms some sore of
proce ssing ofthe message

The "snk" iz the inal
destination ofthe
franstomed mes=sage.

Source

Pipe 1

Filter 1

Filter 2

Pipe 3

>

Sink

Symbol mble

Lexical analysis

|

Syntax analysis

1

Semantics analysis

\

Intermediate code generation

5. Broker pattern

This pattern is used to structure distributed systems with decoupled components.
These components can interact with each other by remote service invocations.

A broker component is responsible for the coordination of communication
among components.

Servers publish their capabilities (services and characteristics) to a broker.

Clients request a service from the broker, and the broker then redirects the client to a
suitable service from its registry.

N
U — “” Bank 1
Sage Customer Loan Broker —
* Message broker software such as Apache ActiveMQ, Apache ' [| .
Kafka, RabbitMQ and JBoss Messaging. NN
[J '/"\,‘
L ”” Bank 3

Credit Bureau

https://en.wikipedia.org/wiki/Apache_ActiveMQ
https://en.wikipedia.org/wiki/Apache_Kafka
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/JBoss_Messaging

Client

Broker

Server 1

Server 2

Server 3

6. Peer-to-peer pattern

* |n this pattern, individual components are known as peers.

* Peers may function both as a client, requesting services from other peers, and as
a server, providing services to other peers.

* A peer ma?/ act as a client or as a server or as both, and it can change its role
dynamically with time.

Usage

 File-sharing networks such as Gnutella and G2)

* Multimedia protocols such as P2PTV and PDTP.

* Proprietary multimedia applications such as Spotify.

https://en.wikipedia.org/wiki/Gnutella
https://en.wikipedia.org/wiki/Gnutella2
https://en.wikipedia.org/wiki/P2PTV
https://en.wikipedia.org/wiki/Peer_Distributed_Transfer_Protocol
https://en.wikipedia.org/wiki/Spotify

Peer 1
(Client and server)

]

Peer 1
(Client and server)

7. Event-bus pattern

* This pattern primarily deals with events and has 4 major components;
* event source,
* event listener,
* channel and
e event bus.

* Sources publish messages to particular channels on an event bus.
* Listeners subscribe to particular channels.

e Listeners are notified of messages that are published to a channel to which they
have subscribed before.

Subscriber

Usage

* Android development

* Notification services

onEvent()

OSt
P Event

Subscriber

onEvent()

Source 1 Source 2
A J k J
Channel 1 Channel 2 Bus
_~
h 4 h J
Listener 1 Listener 2

" LoginPresenter ‘

EventBus

1. Fire LoginSuccessfulEvent

2. Deliver LoginSuccessfulEvent 1

3. ReloaddataD MenuPresenter J

MailsPresenter

4. Update View l

MenuView

MailsView

3. Reload data

8. Model-view-controller pattern

* This pattern, also known as MVC pattern, divides an interactive application in to 3
parts as,

* model — contains the core functionality and data
» view — displays the information to the user (more than one view may be defined)
e controller — handles the input from the user

* This is done to separate internal representations of information from the ways
information is presented to, and accepted from, the user. It decouples
components and allows efficient code reuse.

Usage
e Architecture for World Wide Web applications in major programming languages.
* Web frameworks such as Django and Rails.

https://en.wikipedia.org/wiki/Django_(web_framework)
https://en.wikipedia.org/wiki/Ruby_on_Rails

input events

>

View

update model

view control
Controller
’,'i’
change
notification

Model

query model

Pie chart

Spreadsheet
Controller
A
]
Labour; 60% Model
Tory: 30% o
LibDem: 10%
=
e Views
Bar chart = \

N

Model

invokes

Controller

invokas

Controller - Task
command +— invokes —+ command
data retrieval data retrieval
and update and update

data
() Entiies <+ retrieval —» Database
and update

L data retrieval

View

JSP template
Response

| Data
engine forwards @ bean

9. Blackboard pattern

* This pattern is useful for problems for which no deterministic solution strategies are
known. The blackboard pattern consists of 3 main components.

* blackboard — a structured global memory containing objects from the solution space
* knowledge source — specialized modules with their own representation
e control component — selects, configures and executes modules.

e All the components have access to the blackboard.
 Components may produce new data objects that are added to the blackboard.

 Components look for particular kinds of data on the blackboard, and may find these by
pattern matching with the existing knowledge source.

Usage

» Speech recognition

* Vehicle identification and tracking
* Protein structure identification

* Sonar signals interpretation.

* Problem solvers work independently on part of the problem
e Share common data structure
e Central controller manages access to the blackboard

* Blackboard may be strcured in levels of abtraction to allow work at
different levels

* Blackbpard contain original input and partial solutions

e Difficult to test

* Difficult to guarantee an optimal solution
* Control strategy often heuristic
* May be computationally expensive

 Parallelism possible

A

User

MVC System | » -7 \
7 \
shows/sfa/tus gene?‘gtes events
' \
s 4 \
Bl N
View(s) Controller(s)
DN /
\ /
prochQs data chapées
\ /
\ /
M L

Model

=

KnowledgeSource

1

Blackboard

solutions

inspect()
update()

updateBlackboard()

1

Phrase | Word

Control

creation creation

loop()
nextsSource()

' - .
| Segmentation |
. S =

™

_ Controller |

:

Phrasel...Phrase2... Blackboard
:Wﬂrd 1. W nrl.:'l\..”!..'.' .Wmdfﬁ...ﬁﬁrdd...
i ™.

- -~ -\\\.
2NN
H“M Rt

52 S‘S 54 Sfr SE .87...58...89...

N \

'|- -.: .' ".
|

I. I '|
1]

10. Interpreter pattern

* This pattern is used for designing a component that interprets
programs written in a dedicated language.

* It mainly specifies how to evaluate lines of programs, known as
sentences or expressions written in a particular language.

* The basic idea is to have a class for each symbol of the language.

Usage
e Database query languages such as SQL.
* Languages used to describe communication protocols.

Client

4

Context

AbstractExpression

h J

interpret(Context)

A

I

TerminalExpression

¥

InterpreterPatternDemo

+getMaleExpression() : void
+getmarriedWomenexpression()

: void

uses

Expression <<Interface>>

+interpret() : void

implements

Timplement

TerminalExpression

AndExpression

interpret(Context)

NonterminalExpression

-data : String

-exprl : Expression

interpret(Context)

+TerminalExpression()

+interpret(): boolean

-expr2 : Expression

+AndExpression ()
+interpret(): boolean

OrExpression

-exprl : Expression
-expr2 : Expression

+0rExpression()
+interpret(): boolean

Name ________________ JAdvantages ___ |Disadvantages _____________________________________

Layered

A lower layer can be used by different higher layers.
Layers make standardization easier as we can clearly define levels.
Changes can be made within the layer without affecting other layers.

Client-server Good to model a set of services where clients can request them.

Master-slave Accuracy - The execution of a service is delegated to different slaves, with
different implementations.

Exhibits concurrent processing. When input and output consist of streams,

Pipe-filter
and filters start computing when they receive data.
Easy to add filters. The system can be extended easily.

of filters

Broker Allows dynamic change, addition, deletion and relocation of objects, and it
makes distribution transparent to the developer.

New publishers, subscribers and connections can be added easily.
Effective for highly distributed applications.

Model-view-controller Makes it easy to have multiple views of the same model, which can be
connected and disconnected at run-time.

Blackboard Easy to add new applications.
Extending the structure of the data space is easy.

Interpreter Highly dynamic behavior is possible.
Good for end user programmability.
Enhances flexibility, because replacing an interpreted program is easy.

Peer-to-peer Supports decentralized computing.
Highly robust in the failure of any given node.
Highly scalable in terms of resources and computing power.

Filters are reusable. Can build different pipelines by recombining a given set

Not universally applicable.
Certain layers may have to be skipped in certain situations.

Requests are typically handled in separate threads on the server.
Inter-process communication causes overhead as different clients have different
representations.

The slaves are isolated: there is no shared state.

The latency in the master-slave communication can be an issue, for instance in
real-time systems.

This pattern can only be applied to a problem that can be decomposed.

Efficiency is limited by the slowest filter process.
Data-transformation overhead when moving from one filter to another.

Requires standardization of service descriptions.

There is no guarantee about quality of service, as nodes cooperate voluntarily.
Security is difficult to be guaranteed.
Performance depends on the number of nodes.

Scalability may be a problem, as all messages travel through the same event bus

Increases complexity. May lead to many unnecessary updates for user actions.

Modifying the structure of the data space is hard, as all applications are affected
May need synchronization and access control.

Because an interpreted language is generally slower than a compiled one,
performance may be an issue.

